首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6825篇
  免费   379篇
  国内免费   52篇
电工技术   134篇
综合类   25篇
化学工业   1590篇
金属工艺   118篇
机械仪表   204篇
建筑科学   277篇
矿业工程   5篇
能源动力   465篇
轻工业   708篇
水利工程   76篇
石油天然气   115篇
无线电   653篇
一般工业技术   1155篇
冶金工业   337篇
原子能技术   83篇
自动化技术   1311篇
  2024年   11篇
  2023年   144篇
  2022年   239篇
  2021年   387篇
  2020年   294篇
  2019年   335篇
  2018年   416篇
  2017年   357篇
  2016年   355篇
  2015年   237篇
  2014年   319篇
  2013年   644篇
  2012年   358篇
  2011年   506篇
  2010年   350篇
  2009年   330篇
  2008年   289篇
  2007年   221篇
  2006年   204篇
  2005年   141篇
  2004年   111篇
  2003年   117篇
  2002年   88篇
  2001年   57篇
  2000年   52篇
  1999年   38篇
  1998年   61篇
  1997年   32篇
  1996年   37篇
  1995年   40篇
  1994年   34篇
  1993年   44篇
  1992年   37篇
  1991年   31篇
  1990年   30篇
  1989年   17篇
  1988年   32篇
  1987年   26篇
  1986年   21篇
  1985年   15篇
  1984年   25篇
  1983年   24篇
  1982年   21篇
  1981年   17篇
  1980年   19篇
  1979年   14篇
  1978年   16篇
  1977年   11篇
  1976年   13篇
  1975年   19篇
排序方式: 共有7256条查询结果,搜索用时 64 毫秒
991.
The propagation of plane waves in a thermo-microstretch elastic solid half-space as proposed by Lord?CShulman as well as the classical dynamical coupled theory are discussed. The problem has been solved numerically using a finite element method. Numerical results for the displacement components, force stresses, temperature, couple stresses, and microstress distribution are obtained. The variations of the considered variables through the horizontal distance are given and illustrated graphically. Comparisons are made with the results predicted by the theory of generalized thermoelasticity for different values of the relaxation time.  相似文献   
992.
This work was undertaken to investigate microemulsion (ME) as a topical delivery system for the poorly water-soluble voriconazole. Different ME components were selected for the preparation of plain ME systems with suitable rheological properties for topical use. Two permeation enhancers were incorporated, namely sodium deoxycholate or oleic acid. Drug-loaded MEs were evaluated for their physical appearance, pH, rheological properties and in vitro permeation studies using guinea pig skin. MEs based on polyoxyethylene(10)oleyl ether (Brij 97) as the surfactant showed pseudoplastic flow with thixotropic behavior and were loaded with voriconazole. Jojoba oil-based MEs successfully prolonged voriconazole release up to 4?h. No significant changes in physical or rheological properties were recorded on storage for 12 months at ambient conditions. The presence of permeation enhancers favored transdermal rather than dermal delivery. Sodium deoxycholate was more effective than oleic acid for enhancing the voriconazole permeation. Voriconazole-loaded MEs, with and without enhancers, showed significantly better antifungal activity against Candida albicans than voriconazole supersaturated solution. In conclusion, the studied ME formulae could be promising vehicles for topical delivery of voriconazole.  相似文献   
993.
The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.  相似文献   
994.
Cubic copper ferrite CuFe2O4 nanopowders have been synthesized via a hydrothermal route using industrial wastes. The synthesis conditions were systematically studied using statistical design (Box–Behnken Program) and the optimum conditions were determined. The results revealed that single phase of cubic copper ferrite powders can be obtained at different temperatures from 100 to 200 °C for times from 12 to 36 h with pH values 8–12. The crystallite size of the produced powders was in the range between 24.6 and 51.5 nm. The produced copper ferrite powders were appeared as a homogeneous pseudo-cubic-like structure. A high saturation magnetization (Ms 83.7 emu/g) was achieved at hydrothermal temperature 200 °C for 24 h and pH 8. Photocatalytic degradation of the methylene blue dye using copper ferrite powders produced at different conditions was investigated. A good catalytic efficiency was 95.9% at hydrothermal temperature 200 °C for hydrothermal time 24 h at pH 12 due to high surface area (118.4 m2/g).  相似文献   
995.
The efficiency and output power density of an integrated high temperature polymer electrolyte fuel cell system and glycerol reformer are studied. The effects of reformer temperature, steam to carbon ratio (S/C), fuel cell temperature, and anode stoichiometric ratio are examined. An increase in anode stoichiometric ratio will reduce CO poisoning effect at cell’s anode but cause lower fuel utilization towards energy generation. High S/C operation requires large amount of the energy available, however, it will increase anode tolerance to CO poisoning and therefore will lead to enhanced cell performance. Consequently, the optimum gas composition and flow rate is very dependent on cell operating current density and temperature. For example, at low current densities, similar efficiencies were obtained for all the S/C ratio studied range at cell temperature of 423.15 K, however, at cell temperature of 448.15 K, low S/C ratio provided higher efficiency in comparison to high S/C ratio. High S/C is essential when operating the cells at high current densities where CO has considerable impact on cell performance. Optimal conditions that provide the maximum power density at a given efficiency are reported.  相似文献   
996.
In this paper, we report on the effect of chemical vapor etching-based porous silicon (PS) on the performance of multicrystalline silicon solar cells performed via deep n+/p junction-type structures. Chemical vapor etching of silicon leads to the formation of porous silicon (PS) nanostructures that dramatically decrease the surface reflectivity from 30% to about 8%, and increase the minority carrier diffusion lengths from 90 μm to 170 μm. As a result, the short-circuit current density was improved by more than 20% and the fill factor (FF) by about a 10%. An enhancement of the photovoltaic conversion energy efficiency of the solar cells from 7% to 10% was observed. This low-cost PS formation process can be applied in the photovoltaic cell technology as a standard procedure.  相似文献   
997.
A pore network modeling approach is developed to study multiphase transport phenomena inside a porous structure representative of the Cathode Catalyst Layer (CCL) of Proton Exchange Membrane Fuel Cell. A full coupling between two-phase transport, charge transport and heat transport is considered. The liquid water evaporation is also taken into account. The current density profile and the liquid water distribution and production are investigated to understand the liquid production mechanism inside the CCL. The results suggest that the wettability and the pore size distribution have an important impact on the water management inside the cathode catalyst layer and thus on the performances of the proton exchange membrane fuel cell. Simulations show also that Bruggemann correlation used in classical models does not predict correctly gas diffusion.  相似文献   
998.
The conversion of 45S5 glass and glass–ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically <3 months). In this paper, we report for the first time on the long-term conversion of 45S5 glass–ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75–150 μm) were immersed for 10 years at room temperature (~25 °C) in K2HPO4 solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25–45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K2HPO4 concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K2HPO4 solution but a calcium pyrophosphate product, Ca10K4(P2O7)6.9H2O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass–ceramics in biomedical applications are discussed.  相似文献   
999.
Metakaolin (MK) is a valuable admixture for concrete/cement applications that can enhance the performance of cementitious composites through high pozzolanic reactivity, much like silica fume (SF). While SF concrete is characterized by superior mechanical and durability performance, concrete containing MK achieves comparable properties at a lower price and with better workability. The objective of this study is to investigate the effect of cement replacement by MK on the durability of self-consolidating concrete (SCC); the effect of SF at similar levels of MK replacement has also been included for comparison. The durability performance of SCC was evaluated based on the results of drying shrinkage, freezing and thawing, salt scaling, and rapid chloride permeability tests. The results of these tests indicate that highly durable SCC mixtures can be produced using a high MK content with an optimum percentage of around 20%. The results also show that the durability of SCC, especially with high MK content, is higher than that of SCC containing SF.  相似文献   
1000.
Planar electrochemical microcells were micromachined in a microcrystalline boron-doped diamond (BDD) thin layer using a femtosecond laser. The electrochemical performances of the new laser-machined BDD microcell were assessed by differential pulse anodic stripping voltammetry (DPASV) determinations, at the nanomolar level, of the four heavy metal ions of the European Water Framework Directive (WFD): Cd(II), Ni(II), Pb(II), Hg(II). The results are compared with those of previously published BDD electrodes. The calculated detection limits are 0.4, 6.8, 5.5, and 2.3 nM, and the linearities go up to 35, 97, 48, and 5 nM for, respectively, Cd(II), Ni(II) Pb(II), and Hg(II). The detection limits meet with the environmental quality standard of the WFD for three of the four metals. It was shown that the four heavy metals could be detected simultaneously in the concentration ratio usually measured in sewage or runoff waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号